Shape Similarity Based on a Treelet Kernel with Edition

نویسندگان

  • Sébastien Bougleux
  • François-Xavier Dupé
  • Luc Brun
  • Myriam Mokhtari
چکیده

Several shape similarity measures, based on shape skeletons, are designed in the context of graph kernels. State-of-the-art kernels act on bags of walks, paths or trails which decompose the skeleton graph, and take into account structural noise through edition mechanisms. However, these approaches fail to capture the complexity of junctions inside skeleton graphs due to the linearity of the patterns. To overcome this drawback, tree patterns embedded in the plane have been proposed to decompose the skeleton graphs. In this paper, we reinforce the behaviour of kernel based on tree patterns by explictly incorporating an edition mechanism adapted to tree patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Tree Covering within a Graph Kernel Framework for Shape Classification

Shape classification using graphs and skeletons usually involves edition processes in order to reduce the influence of structural noise. However, edition distances can not be readily used within the kernel machine framework as they generally lead to indefinite kernels. In this paper, we propose a graph kernel based on bags of paths and edit operations which remains positive-definite according t...

متن کامل

Treelet kernel incorporating cyclic, stereo and inter pattern information in chemoinformatics

Chemoinformatics is a research field concerned with the study of physical or biological molecular properties through computer science’s research fields such as machine learning and graph theory. From this point of view, graph kernels provide a nice framework which allows to naturally combine machine learning and graph theory techniques. Graph kernels based on bags of patterns have proven their ...

متن کامل

Edition within a Graph Kernel Framework for Shape Recognition

A large family of shape comparison methods is based on a medial axis transform combined with an encoding of the skeleton by a graph. Despite many qualities this encoding of shapes suffers from the non continuity of the medial axis transform. In this paper, we propose to integrate robustness against structural noise inside a graph kernel. This robustness is based on a selection of the paths acco...

متن کامل

Treelet Kernel Incorporating Chiral Information

Molecules being often described using a graph representation, graph kernels provide an interesting framework which allows to combine machine learning and graph theory in order to predict molecule’s properties. However, some of these properties are induced both by relationships between the atoms of a molecule and by constraints on the relative positioning of these atoms. Graph kernels based sole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012